Table of Contents

Chapter 1

Introduction: What is Astronomy? 1

- 1.1 Knowing, Believing, and Falsifiability 2
- 1.2 Deduction, Induction, and "Inference to the Best Explanation" 3
 - 1.2a Deduction
 - 1.2b Induction
 - 1.2c Inference to the Best Explanation
- 1.3 Scientific Descriptions 5
 - 1.3a Hypotheses and Theories
 - 1.3b Laws and "Proof"
- 1.4 The Scientific Method 7
- 1.5 Communicating Scientific Ideas (Or Anything Else) 8
- 1.6 Astronomy and Astrology 10
- 1.7 Science, Art, Religion, and Other Ways of Knowing 10
- 1.8 A Brief Introduction to the Universe 11
 - 1.8a Our Front Yard: The Sun and the Solar System
 - 1.8b Our Home Town: The Milky Way Galaxy
 - 1.8c Distant Lands: Galaxies and Quasars
 - 1.8d How Big Is the Universe?

Chapter 2

Before We Take Off: A Look at the Night Sky 19

- 2.1 What Is a Constellation, Really? 19
- 2.2 Real and Apparent Motion 20
 - 2.2a Real Motion that is Important
 - 2.2b Real Motion That Is Not Important (at Least for Now)
- 2.3 When Earth Rotates, What Do We See? 23
 - 2.3a Earth's Rotational Period
 - 2.3b The View from the North Pole
 - 2.3c The View from the Equator
 - 2.3d The View from Anywhere Else
 - 2.3e The Day/Night Cycle
- 2.4 When Earth Goes Around the Sun, What Do We See? 28
 - 2.4a Our Ever Changing View of the Stars
 - 2.4b Zodiacal Constellations
 - 2.4c The Seasons

2.5	When the Moon Goes Around the Earth, What Do We See? 36 2.5a Lunar Phases, or the Phases of the Moon 2.5b Eclipses
2.6	When the Other Planets Go around the Sun, What Do We See? 40
Chap	ter 3
Packin	g for the Trip I: Mathematics, Scientific Notation, and Units 43
3.1	Mathematics: Why You Needn't Fear It 43
3.2	How to Write Really, Really Big (or Small) Numbers in a Simple Way 44
3.3	Units 47 3.3a Distance 3.3b Mass 3.3c Luminosity 3.3d Temperature 3.3e Time
3.4	Summary 51
Chap Packin	ter 4 g for the Trip II: Matter, Energy, and the Forces of Nature 53
4.1	Space, Time, and Spacetime 53
4.2	The Nature of Matter 55
4.3	 How Particles Interact 57 4.3a Mass, Curved Spacetime, and Gravity 4.3b Electric Charge and the Electromagnetic Force 4.3c Two More Forces 4.3d Matter in Bulk: The States of Matter
4.4	Matter and Energy 64 4.4a Energy of Motion 4.4b Stored Energy 4.4c Mass As Energy 4.4d Energy Conservation

Packing for the Trip III: Light 69

- 5.1 The Basics: What We Know About Light 69
- 5.2 What is Light? A Very Famous Experiment 71
 - 5.2a An Experiment with Baseballs
 - 5.2b An Experiment with Water Waves
 - 5.2c An Experiment with Light
- 5.3 What Is Light? 76
 - 5.3a Light as Particles
 - 5.3b Light as a Wave
- 5.4 Light from Astronomical Sources 81
 - 5.4a Light from Individual Atoms: The Emission Spectrum
 - 5.4b Light from Atoms Working Together: The Continuous Spectrum
 - 5.4c Light from a Solid Seen through a Gas: The Absorption Spectrum
 - 5.4d A Quick Summary of a Challenging Topic
- 5.5 So What is Light? Particle or Wave? 91

Chapter 6

Packing for the Trip IV: Telescopes 93

- 6.1 Refracting Telescopes 94
- 6.2 Reflecting Telescopes 96
- 6.3 Astronomy Across the Spectrum 96
 - 6.3a Radio Astronomy
 - 6.3b Ultraviolet, X–ray, and Gamma–ray Astronomy

Chapter 7

Gravity Wave Astronomy 101

- 7.1 What Gravity Waves Are And Why They Are Important 101
- 7.2 How LIGO Works 102
- 7.3 The Importance of LIGO and Gravity Waves 106
 - 7.3a Theoretical Importance
 - 7.3b Practical Importance
 - 7.3c Historical Importance
- 7.4 A Catalog of LIGO/Virgo Events 109

The Journey B	Begins: Wh	at Is the	Universe	and	Where	Did I	t
Come From?	111						

8.1	8.1a 8.1b	Hubble and Einstein's Biggest Blunder 111 Redshifts and the Expansion of the Universe More on Redshifts More on the Expansion of the Universe	
8.2	8.2a 8.2b	eation of the Universe and the First Ten–Billionth of a Second In the Beginning: The Big Bang How Forces Behave at High Temperatures The Early Evolution of the Universe: Sorting Out the Fundamental Forces Inflation	115
8.3	8.3a 8.3b 8.3c	Matter and Antimatter Further Evolution: The Most Important Three Minutes in History Evolution Slows Down, from a Run to a Walk The Universe as We Know It Today	
8.4	8.4a 8.4b	Big Bang Really Happen? 125 The Expansion of the Universe The Amount of Helium in the Universe The Cosmic Microwave Background Radiation	

Chapter 9

What Are Galaxies? 131

- 9.1 Spiral Galaxies 132
- 9.2 Elliptical Galaxies 135
- 9.3 Galaxy Interactions 136
- 9.4 Irregular Galaxies 136
- 9.5 Extreme or "Active" Galaxies 137
 - 9.5a Quasars
 - 9.5b Active Galactic Nuclei (AGN)
 - 9.5c Radio Galaxies
 - 9.5d Starburst Galaxies
- 9.6 Galaxy Groups, Clusters, and Superclusters 140

8.5 What Was Happening Before the Big Bang? 127

What Is a Star? 141

- 10.1 How to Make a Star 141
 - 10.1a Getting Started
 - 10.1b The Critical Temperature, Fusion, and the Birth of a Star
- 10.2 What Stars Look Like, and What You Can Learn with a Telescope 145
 - 10.2a The Two Most Important Things You Can Learn About a Star with a Telescope
 - 10.2b The HR Diagram
- 10.3 The Life of a Star 150
 - 10.3a Life on the Main Sequence: How Every Star Begins
 - 10.3b The Life of a Very Low Mass Star
 - 10.3c The Life of a Low Mass Star
 - 10.3d The Life of a High Mass or Very High Mass Star
- 10.4 The Death of a Star 158
 - 10.4a The End of a Low Mass Star
 - 10.4b Novae and One Type of Supernova
 - 10.4c The End of a High Mass Star
 - 10.4d What Is a "Pulsar"?
 - 10.4e The End of a Very High Mass Star

Chapter 11

Black Holes 167

- 11.1 Black Holes 101: The Basics 167
 - 11.1a How Do You Make a Black Hole?
 - 11.1b Why Nothing Can Escape from a Black Hole
 - 11.1c Why Black Holes Are "Black Holes"
- 11.2 Properties of a Black Hole 175
 - 11.2a Light and Black Holes
 - 11.2b How Big Is a Black Hole?
 - 11.2c Black Holes and Gravity: Dispelling a Popular Myth
- 11.3 Into the Abyss: An Imaginary Journey into a Black Hole 180
 - 11.3a Falling into a "Hole" in Space
 - 11.3b Falling into a "Hole" in Time
 - 11.3c The Difficulty of Speaking Accurately About Black Holes
- 11.4 Do Black Holes Really Exist? 183
 - 11.4a Theoretical Evidence
 - 11.4b Indirect Observational Evidence
 - 11.4c Direct Observational Evidence
 - ("Raise Your Hands, All Those Who Have Actually Seen a Black Hole")
 - 11.4d More Observational Evidence: Gravity Waves as Evidence for Black Holes
- **11.5 Wormholes** 187
- 11.6 Black Holes, Wormholes, and Time Travel 188

The Sun and the Formation of the Solar System 1	91
---	----

- 12.1 A Table of Contents for the Solar System 191
- 12.2 An Overview of Our Nearest Star 192
- 12.3 The Structure of the Sun 193
 - 12.3a The Interior of the Sun
 - 12.3b The Surface and Atmosphere of the Sun
- 12.4 The Formation of the Sun and the Solar System 197
 - 12.4a Broad Overall Facts About the Solar System
 - 12.4b The Solar Nebula
 - 12.4c How a Cloud of Gas Turns into Solid Objects
 - 12.4d How to Make a Terrestrial Planet or an Asteroid
 - 12.4e How to Make a Jovian Planet, a Comet or a Jovian Moon
 - 12.4f Impacts and the Period of Early Bombardment
 - 12.4g Why Is the Motion So Orderly Everywhere?
 - 12.4h Exceptions to the Rules
 - 12.4i Details and the Existence of The Moon
- 12.5 A Scale Model of the Solar System 205

Chapter 13

The Terrestrial Planets 207

- 13.1 The Interiors of the Terrestrial Planets 208
- 13.2 The Difficulty of Explaining Things 209
 - 13.2a Primary Causes
 - 13.2b Secondary Causes
- 13.3 Factors That Shape the Surface of a Terrestrial Planet 211
 - 13.3a Geologic Forces
 - 13.3b Atmospheres
 - 13.3c A Summary of Planetary Predictions
- 13.4 A Visit to Each Planet 216
 - 13.4a Mercury
 - 13.4b Venus
 - 13.4c Earth
 - 13.4d Mars
- 13.5 Summary 229
- 13.6 Earth Impacts 230
 - 13.6a Small Impacts
 - 13.6b Medium Impacts
 - 13.6c Large Impacts
 - 13.6d How Often Do We Get Hit, and When Will We Get Hit Again?

The Jovian Planets 235

- 14.1 Interiors of the Jovian Planets 236
 - 14.1a Jupiter and Saturn
 - 14.1b Uranus and Neptune
- 14.2 A Brief Tour of the Jovian Planets 241
 - 14.2a Jupiter
 - 14.2b Saturn
 - 14.2c Uranus
 - 14.2d Neptune

Chapter 15

Moons 251

- 15.1 Basic questions 251
 - 15.1a What Is a Moon?
 - 15.1b How Many Moons Are There?
 - 15.1c What Are Moons Made Of?
 - 15.1d How Do Planets Get Moons?
 - 15.1e Classifying Moons: Small, Medium and Large
- 15.2 A Tour of the Seven Largest Moons 254
 - 15.2a Earth's Moon, Luna, aka "The Moon"
 - 15.2b The Galilean Moons: Io, Europa, Ganymede, and Callisto

Chapter 16

Asteroids, Comets, Rings, and Pluto 269

- 16.1 Pluto and the Dwarf Planets 269
 - 16.1a Physical Characteristics and Orbit of Pluto
 - 16.1b Pluto, Other Dwarf Planets, and the IAU
 - 16.1c The New Pluto
- **16.2** Asteroids 273
 - 16.2a What is an Asteroid?
 - 16.2b "Where Can I Find an Asteroid?"
- 16.3 Comets and the Trans-Neptunian Objects 277
 - 16.3a Where are the "Dirty Snowballs"?
 - 16.3b How Does a "Dirty Snowball" Become a Comet?
 - 16.3c The Anatomy of a Comet
 - 16.3d Three Types of Comets
 - 16.3e Comets, Meteor Showers, and Meteor Storms
- 16.4 Planetary Rings 284
 - 16.4a Saturn's Rings
 - 16.4b Rings of the Other Jovian Planets
 - 16.4c Where Do Rings Come From?

Extrasolar Planets 287

17.1	Some	Useful	Backo	round	287
------	------	--------	-------	-------	-----

- 17.1a Direct and Indirect Detection
- 17.1b Confirmed Exoplanets and Candidate Exoplanets
- 17.1c Face-on, Edge-on, and Inbetween

17.2 Methods for Discovering Extrasolar Planets 290

- 17.2a Direct Detection (Also Known as Imaging)
- 17.2b The Transit Method
- 17.2c The Spectroscopic Method (also known as the Radial Velocity Method or the

Doppler Method)

- 17.2d Gravitational Microlensing
- 17.2e Measuring Variations in Transit Timing
- 17.2f Measuring Variations in Eclipse Timing
- 17.2g Measuring Variations in Pulsar Timing

17.3 An Important Difficulty and its Consequences 300

Chapter 18

A Return to Galaxies 303

18.1 Our Galaxy, the Milky Way 303

- 18.1a The Structure of Our Galaxy
- 18.1b The Disk I: Nebulae and the Interstellar Medium
- 18.1c The Disk II: Star Formation in the Galaxy
- 18.1d The Disk III: Spiral Arms
- 18.1e The Bulge
- 18.1f The Galactic Center
- 18.1g The Halo
- 18.1h Dark Matter and the Milky Way

18.2 Other Galaxies 312

- 18.2a Other Spiral Galaxies
- 18.2b Elliptical Galaxies
- 18.2c Galaxies and Supermassive Black Holes
- 18.2d Are There Planets in Other Galaxies?

18.3 Galaxies and the Large Scale Structure of the Universe 314

	•		4 1	-				-	-
1 1	tΔ	In	th	□ Ι	Ini	VA	rca	31	
			LIII		,,,,,	VC	35		

- **19.1** What Is Life? 317
- 19.2 Where Shall We Look? 320
- 19.3 Life in the Solar System? 321
 - 19.3a Europa (and a Few Other Jovian Moons)
 - 19.3b Mars

19.4 Habitable Planets and Life Around Other Stars 324

- 19.4a The Habitable Zone
- 19.4b The Trouble with Very Low Mass Main Sequence Stars
- 19.4c The Trouble with Very High Mass Main Sequence Stars
- 19.4d The Trouble with Red Giant Stars and Other Evolved Stars
- 19.4e White Dwarfs Anyone?
- 19.4f Solar Type Stars: The Best Bet for Life as We Know It

19.5 SETI: The Search for "Intelligent" Life 331

- 19.5a What Would an Alien Signal Look Like?
- 19.5b Why Would Anyone Broadcast a Signal into Space?
- 19.6 Is There Anybody Out There? 334

Chapter 20

Where Are We Going? The Future of the Universe 341

- 20.1 Baseballs and Escape Velocity 341
- 20.2 Two Possible Futures, Three Possible Universes 342
 - 20.2a Omega and the Critical Mass Density
 - 20.2b The Geometry of the Universe
- 20.3 The Mass of the Universe 349
 - 20.3a Finding the Mass of Something: The Light Method
 - 20.3b Finding the Mass of Something: The Motion Method
 - 20.3c Finding the Mass of Something: The Gravitational Lens Method
 - 20.3d Do the Methods Work?
- 20.4 Dark Matter 353
 - 20.4a "Normal" Dark Matter
 - 20.4b "Non-Normal" Dark Matter
- 20.5 Open, Closed, or Flat? 356
 - 20.5a The Flatness Problem
 - 20.5b Inflation to the Rescue
 - 20.5c Dark Energy and the Accelerating Universe
- 20.6 How to Think Accurately About the Universe 364